Copied to
clipboard

G = C4223D14order 448 = 26·7

23rd semidirect product of C42 and D14 acting via D14/C7=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C4223D14, C14.1372+ 1+4, C4⋊C433D14, (C4×D28)⋊13C2, (C4×C28)⋊7C22, C4⋊D2836C2, D14⋊C47C22, C4.D288C2, C422C22D7, C22⋊D2827C2, D14⋊D444C2, D28⋊C439C2, D14⋊Q840C2, (C2×D28)⋊29C22, C4⋊Dic761C22, C22⋊C4.40D14, D14.12(C4○D4), D14.D448C2, D14.5D438C2, (C2×C28).193C23, (C2×C14).248C24, Dic7⋊C427C22, C79(C22.32C24), (C4×Dic7)⋊38C22, C2.62(D48D14), C23.54(C22×D7), Dic7.D444C2, (C2×Dic14)⋊11C22, (C22×C14).62C23, (C23×D7).68C22, C22.269(C23×D7), C23.D7.64C22, (C2×Dic7).264C23, (C22×D7).111C23, C2.95(D7×C4○D4), (C2×C4×D7)⋊27C22, C4⋊C4⋊D741C2, (C7×C4⋊C4)⋊32C22, (D7×C22⋊C4)⋊20C2, (C7×C422C2)⋊3C2, C14.206(C2×C4○D4), (C2×C4).85(C22×D7), (C2×C7⋊D4).68C22, (C7×C22⋊C4).73C22, SmallGroup(448,1157)

Series: Derived Chief Lower central Upper central

C1C2×C14 — C4223D14
C1C7C14C2×C14C22×D7C23×D7D7×C22⋊C4 — C4223D14
C7C2×C14 — C4223D14
C1C22C422C2

Generators and relations for C4223D14
 G = < a,b,c,d | a4=b4=c14=d2=1, ab=ba, cac-1=dad=a-1b2, cbc-1=a2b, dbd=b-1, dcd=c-1 >

Subgroups: 1484 in 250 conjugacy classes, 93 normal (91 characteristic)
C1, C2, C2, C4, C22, C22, C7, C2×C4, C2×C4, D4, Q8, C23, C23, D7, C14, C14, C42, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C2×D4, C2×Q8, C24, Dic7, C28, D14, D14, C2×C14, C2×C14, C2×C22⋊C4, C4×D4, C22≀C2, C4⋊D4, C22⋊Q8, C22.D4, C4.4D4, C422C2, C422C2, Dic14, C4×D7, D28, C2×Dic7, C7⋊D4, C2×C28, C22×D7, C22×D7, C22×C14, C22.32C24, C4×Dic7, Dic7⋊C4, C4⋊Dic7, D14⋊C4, C23.D7, C4×C28, C7×C22⋊C4, C7×C4⋊C4, C2×Dic14, C2×C4×D7, C2×D28, C2×C7⋊D4, C23×D7, C4×D28, C4.D28, D7×C22⋊C4, C22⋊D28, D14.D4, D14⋊D4, Dic7.D4, D28⋊C4, D14.5D4, C4⋊D28, D14⋊Q8, C4⋊C4⋊D7, C7×C422C2, C4223D14
Quotients: C1, C2, C22, C23, D7, C4○D4, C24, D14, C2×C4○D4, 2+ 1+4, C22×D7, C22.32C24, C23×D7, D7×C4○D4, D48D14, C4223D14

Smallest permutation representation of C4223D14
On 112 points
Generators in S112
(1 74 13 94)(2 82 14 88)(3 76 8 96)(4 84 9 90)(5 78 10 98)(6 72 11 92)(7 80 12 86)(15 81 22 87)(16 75 23 95)(17 83 24 89)(18 77 25 97)(19 71 26 91)(20 79 27 85)(21 73 28 93)(29 109 36 47)(30 55 37 103)(31 111 38 49)(32 43 39 105)(33 99 40 51)(34 45 41 107)(35 101 42 53)(44 59 106 66)(46 61 108 68)(48 63 110 70)(50 65 112 58)(52 67 100 60)(54 69 102 62)(56 57 104 64)
(1 64 22 38)(2 58 23 32)(3 66 24 40)(4 60 25 34)(5 68 26 42)(6 62 27 36)(7 70 28 30)(8 59 17 33)(9 67 18 41)(10 61 19 35)(11 69 20 29)(12 63 21 37)(13 57 15 31)(14 65 16 39)(43 82 50 95)(44 89 51 76)(45 84 52 97)(46 91 53 78)(47 72 54 85)(48 93 55 80)(49 74 56 87)(71 101 98 108)(73 103 86 110)(75 105 88 112)(77 107 90 100)(79 109 92 102)(81 111 94 104)(83 99 96 106)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 7)(2 6)(3 5)(8 10)(11 14)(12 13)(15 21)(16 20)(17 19)(22 28)(23 27)(24 26)(29 65)(30 64)(31 63)(32 62)(33 61)(34 60)(35 59)(36 58)(37 57)(38 70)(39 69)(40 68)(41 67)(42 66)(43 109)(44 108)(45 107)(46 106)(47 105)(48 104)(49 103)(50 102)(51 101)(52 100)(53 99)(54 112)(55 111)(56 110)(71 76)(72 75)(73 74)(77 84)(78 83)(79 82)(80 81)(85 88)(86 87)(89 98)(90 97)(91 96)(92 95)(93 94)

G:=sub<Sym(112)| (1,74,13,94)(2,82,14,88)(3,76,8,96)(4,84,9,90)(5,78,10,98)(6,72,11,92)(7,80,12,86)(15,81,22,87)(16,75,23,95)(17,83,24,89)(18,77,25,97)(19,71,26,91)(20,79,27,85)(21,73,28,93)(29,109,36,47)(30,55,37,103)(31,111,38,49)(32,43,39,105)(33,99,40,51)(34,45,41,107)(35,101,42,53)(44,59,106,66)(46,61,108,68)(48,63,110,70)(50,65,112,58)(52,67,100,60)(54,69,102,62)(56,57,104,64), (1,64,22,38)(2,58,23,32)(3,66,24,40)(4,60,25,34)(5,68,26,42)(6,62,27,36)(7,70,28,30)(8,59,17,33)(9,67,18,41)(10,61,19,35)(11,69,20,29)(12,63,21,37)(13,57,15,31)(14,65,16,39)(43,82,50,95)(44,89,51,76)(45,84,52,97)(46,91,53,78)(47,72,54,85)(48,93,55,80)(49,74,56,87)(71,101,98,108)(73,103,86,110)(75,105,88,112)(77,107,90,100)(79,109,92,102)(81,111,94,104)(83,99,96,106), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,7)(2,6)(3,5)(8,10)(11,14)(12,13)(15,21)(16,20)(17,19)(22,28)(23,27)(24,26)(29,65)(30,64)(31,63)(32,62)(33,61)(34,60)(35,59)(36,58)(37,57)(38,70)(39,69)(40,68)(41,67)(42,66)(43,109)(44,108)(45,107)(46,106)(47,105)(48,104)(49,103)(50,102)(51,101)(52,100)(53,99)(54,112)(55,111)(56,110)(71,76)(72,75)(73,74)(77,84)(78,83)(79,82)(80,81)(85,88)(86,87)(89,98)(90,97)(91,96)(92,95)(93,94)>;

G:=Group( (1,74,13,94)(2,82,14,88)(3,76,8,96)(4,84,9,90)(5,78,10,98)(6,72,11,92)(7,80,12,86)(15,81,22,87)(16,75,23,95)(17,83,24,89)(18,77,25,97)(19,71,26,91)(20,79,27,85)(21,73,28,93)(29,109,36,47)(30,55,37,103)(31,111,38,49)(32,43,39,105)(33,99,40,51)(34,45,41,107)(35,101,42,53)(44,59,106,66)(46,61,108,68)(48,63,110,70)(50,65,112,58)(52,67,100,60)(54,69,102,62)(56,57,104,64), (1,64,22,38)(2,58,23,32)(3,66,24,40)(4,60,25,34)(5,68,26,42)(6,62,27,36)(7,70,28,30)(8,59,17,33)(9,67,18,41)(10,61,19,35)(11,69,20,29)(12,63,21,37)(13,57,15,31)(14,65,16,39)(43,82,50,95)(44,89,51,76)(45,84,52,97)(46,91,53,78)(47,72,54,85)(48,93,55,80)(49,74,56,87)(71,101,98,108)(73,103,86,110)(75,105,88,112)(77,107,90,100)(79,109,92,102)(81,111,94,104)(83,99,96,106), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,7)(2,6)(3,5)(8,10)(11,14)(12,13)(15,21)(16,20)(17,19)(22,28)(23,27)(24,26)(29,65)(30,64)(31,63)(32,62)(33,61)(34,60)(35,59)(36,58)(37,57)(38,70)(39,69)(40,68)(41,67)(42,66)(43,109)(44,108)(45,107)(46,106)(47,105)(48,104)(49,103)(50,102)(51,101)(52,100)(53,99)(54,112)(55,111)(56,110)(71,76)(72,75)(73,74)(77,84)(78,83)(79,82)(80,81)(85,88)(86,87)(89,98)(90,97)(91,96)(92,95)(93,94) );

G=PermutationGroup([[(1,74,13,94),(2,82,14,88),(3,76,8,96),(4,84,9,90),(5,78,10,98),(6,72,11,92),(7,80,12,86),(15,81,22,87),(16,75,23,95),(17,83,24,89),(18,77,25,97),(19,71,26,91),(20,79,27,85),(21,73,28,93),(29,109,36,47),(30,55,37,103),(31,111,38,49),(32,43,39,105),(33,99,40,51),(34,45,41,107),(35,101,42,53),(44,59,106,66),(46,61,108,68),(48,63,110,70),(50,65,112,58),(52,67,100,60),(54,69,102,62),(56,57,104,64)], [(1,64,22,38),(2,58,23,32),(3,66,24,40),(4,60,25,34),(5,68,26,42),(6,62,27,36),(7,70,28,30),(8,59,17,33),(9,67,18,41),(10,61,19,35),(11,69,20,29),(12,63,21,37),(13,57,15,31),(14,65,16,39),(43,82,50,95),(44,89,51,76),(45,84,52,97),(46,91,53,78),(47,72,54,85),(48,93,55,80),(49,74,56,87),(71,101,98,108),(73,103,86,110),(75,105,88,112),(77,107,90,100),(79,109,92,102),(81,111,94,104),(83,99,96,106)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,7),(2,6),(3,5),(8,10),(11,14),(12,13),(15,21),(16,20),(17,19),(22,28),(23,27),(24,26),(29,65),(30,64),(31,63),(32,62),(33,61),(34,60),(35,59),(36,58),(37,57),(38,70),(39,69),(40,68),(41,67),(42,66),(43,109),(44,108),(45,107),(46,106),(47,105),(48,104),(49,103),(50,102),(51,101),(52,100),(53,99),(54,112),(55,111),(56,110),(71,76),(72,75),(73,74),(77,84),(78,83),(79,82),(80,81),(85,88),(86,87),(89,98),(90,97),(91,96),(92,95),(93,94)]])

64 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I4A4B4C···4G4H4I4J4K4L7A7B7C14A···14I14J14K14L28A···28R28S···28AA
order1222222222444···44444477714···1414141428···2828···28
size111141414282828224···414142828282222···28884···48···8

64 irreducible representations

dim1111111111111122222444
type++++++++++++++++++++
imageC1C2C2C2C2C2C2C2C2C2C2C2C2C2D7C4○D4D14D14D142+ 1+4D7×C4○D4D48D14
kernelC4223D14C4×D28C4.D28D7×C22⋊C4C22⋊D28D14.D4D14⋊D4Dic7.D4D28⋊C4D14.5D4C4⋊D28D14⋊Q8C4⋊C4⋊D7C7×C422C2C422C2D14C42C22⋊C4C4⋊C4C14C2C2
# reps11112111112111343992612

Matrix representation of C4223D14 in GL6(𝔽29)

1700000
0170000
00280270
00028027
000010
000001
,
28280000
210000
00271100
0018200
00002711
0000182
,
100000
27280000
00212100
0082600
008888
00213213
,
2800000
210000
00212100
0026800
008888
00321321

G:=sub<GL(6,GF(29))| [17,0,0,0,0,0,0,17,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,27,0,1,0,0,0,0,27,0,1],[28,2,0,0,0,0,28,1,0,0,0,0,0,0,27,18,0,0,0,0,11,2,0,0,0,0,0,0,27,18,0,0,0,0,11,2],[1,27,0,0,0,0,0,28,0,0,0,0,0,0,21,8,8,21,0,0,21,26,8,3,0,0,0,0,8,21,0,0,0,0,8,3],[28,2,0,0,0,0,0,1,0,0,0,0,0,0,21,26,8,3,0,0,21,8,8,21,0,0,0,0,8,3,0,0,0,0,8,21] >;

C4223D14 in GAP, Magma, Sage, TeX

C_4^2\rtimes_{23}D_{14}
% in TeX

G:=Group("C4^2:23D14");
// GroupNames label

G:=SmallGroup(448,1157);
// by ID

G=gap.SmallGroup(448,1157);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,219,184,675,570,192,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^14=d^2=1,a*b=b*a,c*a*c^-1=d*a*d=a^-1*b^2,c*b*c^-1=a^2*b,d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽